Problem 1 Give useful Θ estimates for the following functions $t(n)$.

(a) $t(n) = 5\log_2(n^2) + (\log_2(n))^2 + \log_4(n) + (\log_2(100))^3$.

(b) $t(n)$ satisfies $t(n) = 2t(n/2) + n$.

(c) $t(n)$ satisfies $t(n) = 4t(n/3) + n$.

(d) $t(n)$ is the running time of the following function:

```java
public static void shuffle(int []x, int a, int b, int n) {
    for (int i = 0; i < n; i+=2) {
        int temp = x[a + i];
        x[a + i] = x[b + i];
        x[b + i] = temp;
    }
}
```

(e) $t(n)$ is the running time of the following function that calls shuffle from (d):

```java
public static void multiShuffle(int []x, int a, int n) {
    if (n == 0) return;
    multiShuffle(x, a, n/2);
    multiShuffle(x, a + n/4, n/2);
    multiShuffle(x, a + n/2, n/2);
    shuffle(x, a, a + n/2, n/2);
}
```

Problem 2 Give useful O-estimates of the run times of the following methods:

(a) The method $addHead$ for a singly linked list that has size n.

(b) An efficient method to calculate the power x^n (consider the run time as a function of n, the time should be considered as being proportional to the total number of additions, subtractions, multiplications, and divisions performed).

(c) An efficient method to sort an array of n numbers into order.

For (d) and (e), consider the following recursive function, in which A represents an integer constant:

```java
int f(int n) {
    if (n <= 0) return 1;
    int ans = f(n/2) * 2;
    for (int i = 1; i<= n; i++)
        for (int j = 1; j <= n; j++)
            ans += i / j;
    for (int k = 1; k < A; k++)
        ans -= f(n/2 - k);
    return ans;
}
```

(d) In the case where $A = 3$ estimate the run time of $f(n)$.

(e) In the case where $A = 4$ estimate the run time of $f(n)$.
Problem 3 Give useful O estimates for the run times of the following methods.

(a) removeMin for a PriorityQueue storing n items in a heap implementation.

(b) preOrder for a general Tree storing n items.

(c) get for a chained HashTable storing n items with load factor λ.

(d) A recursive method f that processes n input items by: sorting the items (efficiently), makes two recursive calls to process $n/2$ items, computes the products of all pairs of input items and finally makes two further recursive calls to process $n/2$ items.