
Spring 2018 CS313 Project

Implementation of a GUI to work with Graphs.

Reminder: This is a pass/fail assignment, you must pass it to pass the course.
You do not have to do a perfect job to pass the assignment, but you should
submit something that compiles and creates a GUI that performs some of the
required tasks. The surest way to fail this assignment is to use code written by
somebody else (in or outside of the class) or to share code with another student.
I will use an automated system that detects similarity between different pieces
of code.

The final deadline for this project is Wednesday 5/16/2018. However there
are preliminary milestones that you should try to achieve. You can submit
preliminary versions of the project to check that you have achieved them. The
deadlines for these milestones are as follows:

• Phase 1: Due 04/23/18 code to show a Gui screen with required buttons
on which the help button works and pressing one radio button releases all
of the other radio buttons.

• Phase 2: Due 05/02/18 The Gui now stores and displays a graph in re-
sponse to user mouse clicks on the screen.

• Phase 3: Due 05/09/18 The Gui now has options to enter and store weights
for edges of the graph.

• Phase 4: Due 05/16/18 Either the shortest path or minimal spanning tree
option is implemented and works. This is the version that will receive a
grade.

I advise you to try to submit work for the preliminary phases. This is
optional, but it is a way for me to give you feedback about whether you are on
track with the project.

When you submit any version of your project (preliminary or final) you
should submit only one file named GGxxxx.java where xxxx is changed to be
your last name. For example, if your name was Waxman you would submit a
file called GGWaxman.java.

The main class in this file must be a public class GGWaxman but no other
classes that you use can be public (because only one public class is allowed
in a file). Although this is not an ideal way to organize code it simplifies my
task in grading. I will not accept any other type of submission either for the
final version or the earlier milestones. Submit the homework to me through
blackboard. Late work will not be considered for any phase of the project.

1

The gui that you make should offer the features shown here. This sreenshot
has been made before any graph has been entered. Choosing the Help button
should pop up another window with instructions about how to run your gui.

In order to pick vertices, the user selects the radio button marked Add Ver-
tices and selects positions of vertices in the right half of the gui by clicking the
mouse. Each mouse click generates a vertex of the graph and these vertices are
marked in red as they are added.

2

The user selects the radio button marked Add Edges to add edges. An Edge
is made by clicking on the two vertices that specify its ends. There is no way
for the user to guarantee a perfectly placed click on an existing vertex so you
must allow for reasonably close clicks as well. After the first end vertex of an
edge is selected it is highlighted in green until the second end has been selected
too at which time the edge is added to the graph and drawn on the gui in blue.

After edges have been entered they are assigned weights. If we imagine
edges as roads linking cities, the weights might signify the cost of building a
road. Before choosing the option to change a weight (or add a weight) to an
edge a value for the weight is entered in the text box. Then edges are selected
as usual by clicking on their two vertices and the value is the text box is used
as a weight.

3

The buttons marked Add All Edges and Random Weights are shortcuts that
add in all possible edges between selected vertices and choose random weights
for edges in a graph. Once the graph and edge weights have been entered, the
running gui might look as follows.

A minimal spanning tree corresponds to a network of roads that link all cities
and cost as little as possible to build in the case where the graph represents
a network of roads linking cities (as described earlier). Pressing the button
Minimal Spanning Tree causes the gui to calculate a minimal spanning tree and
display it in green.

In a similar way a shortest path between two vertices requires the selection
of the vertices and then displays the result as a sequence of edges shown in
green.

4

Your Gui can be written either with swing or with Java FX. Although the
first steps just involve Gui code, later steps will require work with a Graph data
structure. This is the topic of Chapter 14 of the text which you should read.
Section 14.2 explains various plans for storing Graph data. Any of these plans
will work well for this project, for example you might choose to use the simplest
of the plans, the Adjacency list as described in Section 14.2.2 on page 620. To
find shortest paths you should apply Dijkstra’s algorithm that is described in
Section 14.6.2 on page 653, To find minimal spanning trees you should apply
Prim’s algorithm as described in Section 14.7.1 on page 664.

You should probably plan to use a number of classes in your project. In
addition to your main class GGxxxx which has the job of displaying the gui on
screen, you might consider having a class Vertex, a class Edge, a class Graph, a
class for the Help screen, listener classes for your Gui and a class that represents
the panel of the Gui in which the graph is displayed.

The following code fragment could help you get started with an implemen-
tation that uses swing classes.

public class GGxxxx extends JFrame {

GraphPicturePanel picture; // you would have to make this class

// to implement behavior of the picture

public static void main(String args[]) {

try {

UIManager.setLookAndFeel(UIManager

.getCrossPlatformLookAndFeelClassName());

} catch (ClassNotFoundException | InstantiationException

| IllegalAccessException | UnsupportedLookAndFeelException e) {

}

new GraphGui();

}

public GraphGui() {

super("Graph GUI");

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

// code to layout gui components omitted

}

public void paint(Graphics g) { // method to be sure the

// picture gets redrwan as it is modified

// if you want to use this plan your GraphPicturePanel

// needs a method with title line:

// public void paintComponent(Graphics g) {

super.paint(g);

picture.repaint();

setVisible(true);

5

}

// other gui code omitted

}

You will also need a class that implements an ActionListener to respond
to user selections of buttons and a class that extends MouseAdapter to detect
mouse clicks in the picture panel.

6

