
Arrays in C++

Instructor: Krishna Mahavadi

Reason behind the idea

When we are programming, often we have to
process a large amount of information. We
can do so by creating a lot of variables to keep
track of them.

•

• However this approach is not the best. Why
not?

Arrays

Arrays are great forkeeping
groups of data.

• track of similar

• What are some scenarios where using arrays
can help us?

Declaring an Array

• Model:

type_of_array name_of_array [size_of_array]
type_of_array: The data type, example: int

name_of_array: The name of
example: grades

size_of_array: The capacity of the

Examples:
– int grades[10];

– string students[10];

the array,

array, example: 10

•

Accessing the entire Array

If we have the following array declared:

– int grades[10];

•

• To access the entire array we would refer
grades.

to

• For example if we want to pass the array into
function, we would pass grades into the
function as an argument.

a

Accessing Elements

If we have an array declare as
– int grades[5];

in the Array

the following:•

• The elements of the array are as follows:
–
–

–

–

–

grades[0]
grades[1]
grades[2]
grades[3]
grades[4]

• Counting in the array starts from 0, and the last
element is size – 1.

Accessing Elements in the Array

• We can assign values
follows:

to the elements as

–

–

–

–

–

grades[0]

grades[1]

grades[2]

grades[3]

grades[4]

=

=

=

=

=

89;

93;

45;

78;

101;

Printing elements of the array

Using the same array as before ‘grades’, we•
can create the following cout statements:
–

–

–

–

–

cout

cout

cout

cout

cout

<<

<<

<<

<<

<<

grades[0];

grades[1];

grades[2];

grades[3];

grades[4];

•

•

NOTE: cout << grades //does NOT work!

Try it out and note what happens.

Loops and Arrays

We can use a for loop to print the elements of
the array. The code would look like this:

•

for (int i = 0 ; i < 5 ; ++i)

cout << grades[i] << endl;

Note

• If our array is:

–

–

–

–

–

–

–

string names[10];

names refers to the array, the whole array

names[0]

names[1]

…

names[9]

Referring

refers

refers

to

to

the

the

very first element

second element

refers to the last element

to names[10] will crash your program!!

Initializing the array

• Sometimes we want to pre-initialize
can do the following:
– int lookup[5] = { 100, 90, 80, 70, 60 };

– int lookup[] = { 100, 90, 80, 70, 60 };
• This would also work

the array, we

• Sometimes we want to initialize the
to zero, we can do the following:
– int sums[10] = {0};

entire array

• {0} is a special code to C++, {1} doesn’t work.

Initializing the array – the catch

You will not be able to initialize arrays if the•

arrays size are specified by
following will NOT work:

int x;

cin >> x;

int a[x];

user input. So, the

Arrays and Functions

Just like regular variables, arrays can be
passed into functions.

•

• When passing arrays into
this first:
– Pass the entire array into

or

– If only one of the element
that one element into the

functions, consider

the sub function,

is needed, pass just
function.

Example of

int main()

{

int grades[5];

passing a single element

//do something that read in grades…

//isPassing returns “pass” or “fail”

cout << getPassFail(grades[0]);

}

What does the function look like?

string getPassFail(int

{

if (score >= 75)

return "pass";

return "fail";

}

score)

Example of

int main()

{

int grades[5];

//do something

printPassOrFail(

}

passing an entire array

that read in grades…

grades, 5);

What does this function look

)

like?

void printPassOrFail(int grades[],
{

int size

for
{

(int i = 0 ; i < size ; ++ i)

if (grades[i] >= 75)
cout << grades[i]

else
cout << grades[i]

<< " - pass.\n";

<< " - fail.\n";
}

}

Important note

When passing arrays as functions you can
of the following ways…

• do it as one

• void printPassOrFail(int

or

void printPassOrFail(int

grades[], int size)

• grades[5], int size)

• C++ allows this because during the time we write the
code, we might not know how big grades array will be.

The additional size variable will help keep track of that.•

Pass by Value or Pass by Reference?

• When we pass variables into sub function,
default behavior is always pass by value.

If we need to pass by reference, we have to
tell C++ with the & symbol.

•

• When we pass arrays into sub function, arrays
are always passed by reference. Sub functions
are free to modify the contents of the array.

Final Note

• A locally declared array
the calling function.

can NOT be returned to

• Example: (Don’t do it!!)

int

{

[] getInput();

int grades[10];

//get user input;

return grades;

}

