(1) Write a recursive function rectangle(int n) that prints a rectangle with n rows and 10 columns. For example it could be applied as follows:

```
int main() {
    cout << rectangle(5) << endl;
    return 0;
}
```

This program should output:

How is this picture related to the simpler picture drawn by rectangle(4)? What value of n makes the task of the function as easy as possible?
(2) Write a function with title:
int triangle(int n)
that calculates the triangular number whose specification is:
triangle $(n)=n+$ triangle $(n-1)$ if n is positive
and triangle $(0)=0$.
Why are these numbers known as triangular numbers?
(3) Write a recursive function secondDigit that could be called as follows:

```
int main() {
    cout << secondDigit(7295) << endl;
    return 0;
}
```

This program should output 2.
(4) Write a recursive function printBinary, that prints a positive integer n in binary. For example, the following program would output 10111:

```
int main() {
    cout << printBinary(23) << endl;
    return 0;
```

Which number is easy to print?
How is printing 23 related to printing $11=(23-1) / 2$?
(5) Write a recursive function with title:
int toBinary(int n)
It could be used in the following main program which should print 10111.

```
int main() {
    int x;
    x = toBinary(23);
    cout << x << endl;
    return 0;
}
```

(6) Write a recursive function with title:
string baseChange(int n, int base)
which converts the decimal number n to the given base.
For example,
baseChange(5,156)
would return 1111 , because 156 is $125+25+5+1$ which is written as 1111 in base 5 .

