Class 20

2D Arrays

2D Arrays

An array is like a row of boxes

A 2D array is like rows of boxes stacked on top of each other

	0	1	2	3	4
0					
1					

2D Arrays

- Think of 2D arrays as an "array of arrays"
- A 2D array can be considered as a table, with rows and columns
- All elements in a 2D array must be of the same type, just as with 1D arrays

Notation

- Declaration
 - data_type array_name[rows][columns]
- Initialization
 - data_type array_name[rows][columns] = {{initialize row_1}, {initialize row_2}, ..., {initialize row_n}}
- Reference an individual array element
 - array_name[row_no][col_no]

Process 2D arrays

- For 1D arrays, process elements using loop
- For 2D arrays, process elements using nested loops
- Sometimes we process row by row, sometimes column by column

row-by-row processing	column-by-column processing	
for (int r = 0; r < ROW_CAPACITY; r++) {	for (int c = 0; c < COL_CAPACITY; c++) {	
for (int c = 0; c < COL_CAPACITY; c++) {	for (int r = 0; r < ROW_CAPACITY; r++) {	
PROCESS ARRAY_NAME [r] [c];	PROCESS ARRAY_NAME [r] [c];	
}	}	
}	}	

Example 1

- Declare and initialize 2D array
- Determine which row has the largest sum
- Plan:
 - Declare variables for maxSum and maxRow
 - Initial value for maxSum should be a sum of one of the rows
 - Iterate through 2D array row by row, summing the elements in each row
 - After summing a row, compare that row's sum to maxSum
 - If maxSum < rowSum, update maxSum and maxRow to current sum and row values

Example 2

- Compute average value stored in each row of a 2D array
- Plan:
 - Declare 1D array called average with same number of boxes as rows in the 2D array
 - Iterate through each row of the 2D array, adding that row's elements into a sum variable
 - After summing the row, divide the sum by the number of elements in the row and store the average for that row in average[r]

Example 3

- Determine which column of a 2D array has the largest value
- Plan:
 - Declare variables for maxSum and maxCol
 - Initial value for maxSum should be a sum of one of the columns
 - Iterate through 2D array column by column, summing the elements in each column
 - After summing a column, compare that column's sum to maxSum
 - If maxSum < colSum, update maxSum and maxCol to current sum and colvalues