
Class 15
Recursion



Re-cap:
Call by value
• When passing values to a function, C++ creates a copy of the values 

stored in the variable
• The function operates on those copies of values

Call by reference
•When you want to pass the actual variable to the function, you mark 

this in the title line by putting an & between the type and name of 
the parameter



Void Function
string fullName1 (string first, string last){

string result = first + “ “ + last;
return result;

}

int main(){
string firstName = “Bob”;
string lastName = “Gallagher”;
// next line prints Bob Gallagher
cout << fullName1(firstName, lastName);
// next line stores result of function call in variable 
string fullName = fullName1(firstName, lastName);
return 0;

}

void fullName2 (string first, string last){
cout << first << “ “ << last;

}

int main(){
string firstName = “Bob”;
string lastName = “Gallagher”;
// next line prints Bob Gallagher
fullName2(firstName, lastName);
// void functions cannot return a value that
// can be stored in a variable
return 0;

}



void positiveCubes(int &a, int &b){
if(a < 0) a = a * a * a * -1;
else a = a * a * a;
if(b < 0) b = b * b * b * -1;
else b = b * b * b;

}

int main(){
int a, b;
cout << “Enter two numbers: “;
cin >> a >> b;
// update each to store the positive cube 
positiveCubes(a, b);
cout << a << “ “ << b << endl; 
return 0;

}

int positiveCube(int a){
if(a < 0) return a * a * a * -1; 
else return a * a * a;

}

int main(){
int a, b;
cout << “Enter two numbers: “;
cin >> a >> b;
// update each to store the positive cube
a = positiveCube(a);
b = positiveCube(b);
cout << a << “ “ << b << endl; 
return 0;

}

Void Function



Recursion

• Use a dictionary to look up an unknown word
• What if the definition in the dictionary contains a word we don’t 

know?
• We use the same dictionary to look up this new word
• Continue looking up unknown words until we have learned the 

meaning of all the unknown words



Recursion

• In a similar manner, we might have a function that solves a problem 
by using itself to solve a smaller version of a problem

• Recursion means “when a thing is defined in terms of itself”
• In programming, recursion happens when a function calls itself within 

its own definition
• Paradox? How can we tell C++ to perform a task by asking it to use 

that task?

--> the key is to ask it to use a simpler version of the task.



Example 1

• Factorial function



Constructing a recursive function

Recursive functions have two parts:
1. A base case, in which the function can return the result 

immediately
1. A recursive case, in which the function must call itself to break the 

current problem down to a simpler level



Example 2

• Given integer n, write function to return left-most digit



Recursion

• Recursion is a programming technique
• Pro: Sometimes it is easier to write a recursive solution than an 

iterative solution
• Con: Sometimes the recursive solution requires too much memory to 

be workable



Benefits of Recursion

• While it takes a bit of practice to easily recognize how to decompose 
problems into recursive formulations, it can be one of the quickest 
ways to design an algorithm

• A recursive version of a function can sometimes be much simpler 
than an iterative version



Example 3

• write_vertical
• Writes digits of a number vertically on a screen



Example 4

• number of digits in an integer



Summery on constructing a recursive function

• A recursive function contains a call to the function being defined
• The recursive call must accomplish a smaller version of the task 

(“Progress Condition”)
• The function must have one or more cases in which the task is 

accomplished without using a recursive call (“Base Cases” or 
“Stopping Conditions”)


	Class 15
	Re-cap:�Call by value
	Void Function
	Slide Number 4
	Recursion
	Recursion
	Example 1
	Constructing a recursive function
	Example 2
	Recursion
	Benefits of Recursion
	Example 3
	Example 4
	Summery on constructing a recursive function

