Class 03

Input Instructions, Assignment Operator, Arithmetic Operations

Variables

- Variables are used to store data in these boxes in memory
- Every variable needs a DATA TYPE and a NAME
- Variable names must conform to the following rules:
- May only contain numbers, letters and underscores
- Cannot begin with a number
- Cannot be a C++ keyword
- Purely for reference, the list of $\mathrm{C}++$ keywords is here: https://en.cppreference.com/w/cpp/keyword

Primitive Data Types

- The computer needs to be told what type of data to store in memory
- Primitive types include:
- Integer (int)
- Double (double)
- String (string)
- Character (char)
- Boolean (bool)

Declaring Variables

- Before we use a variable, we must declare it
- Model:

TYPE NAME;

- Examples:
int years;
double length;
string catName;
char letter;
bool isTrue;

Receiving User Input

- Steps:
- Declare variable
- Prompt user for input
- Store user input in variable
- cin
- Stands for "character input"
- Model:
cin >> [variable name];

Example 1 - Age in seconds

- Plan:
- Declare variable for age
- Declare variable for ageInSecond
- Initialize age to 0
- Prompt the user to enter his/her age as a whole number
- Store input from user into age
- Calculate the age in seconds
- Tell the user the age in seconds

Updating the value stored in a variable

- After a variable is declared, we can alter the value stored in it
- This is done via the assignment operator =
- Model:
[variable name] = [value];

Arithmetic Operations

- Addition +
- Subtraction -
- Multiplication *
- Division /
- Remainder \%

Arithmetic Expressions and Variables

- We can update the value stored in a number variable by performing arithmetic on it

$$
\text { age }=\text { age }+5 ;
$$

- We can assign the result of an arithmetic expression to a number variable

$$
\text { ageInSeconds }=\text { age } * 365 * 24 * 60 * 60 ;
$$

Pitfall to watch for: Integer Division

- Normally, dividing an integer x by an integer y when x is not a multiple of y produces a number with a fractional component
- Example: 7/2=3.5
- In C++, if both operands are integers, the result will be an integer
- Example: 7 / 2 = 3

