
Using Functions in C++

Instructor: Andy Abreu

Two Functions

sqrt(4);

– Square root function finds the square root for you

– It is defined in the cmath library, #include<cmath>

•

• rand();
– Random function generates random value for you

– It is defined in the cstdlib library,

#include <cstdlib>

sqrt() function

sqrt function takes in a number, and returns
the square root

sqrt function is defined as

•

•

–

–

double sqrt(double)

sqrt function takes an input argument of type
double

sqrt function returns an value that is of type
double

–

Rand() function

rand() function doesn’t need any input and
returns a int

rand function is defined as

• it

•

–

–

–

int rand()

rand function does not take any arguments

rand function returns a value that is of type int

Create our

Creating a function is
variable, it

has two parts…

own functions

much like declaring a•

•

– Prototype
• This gives the compiler a preview of what your function

would look like

• This usually goes after ‘using namespace std;’ and before
main()

Definition
• This defines the actions the function should take

• This usually goes after the main() function

int

–

Model of function prototype

return_type function_name(parameter_list);

• return_type
– What the function will return

function_name

– Name of the function

parameter_list

– List of data type of parameter(s)

•

•

Model for function definition

parameter_list•

{

return_type function_name()

//code goes in here

}

• parameter_list
– This parameter list will

name of the variable
include the type and the

Example of function, reading input

• Prototype / Header:
int getNumber();

• Definition:
int getNumber() //matches
{

int num;

above prototype/header

cout << “Enter a number: “;
cin >> num;
return num;

}

Using the

Calling the function:

function

•

int
{

main()

int n =
return

getNumber();
0;

}

/* Note the return type of the function matches
the variable in which the value will be
stored. */

Function’s Return Value

Function often serve very specific purposes. In
our example it was to read in a value from the
user.

This function getNumber need to be able to
communicate this newly obtained value back
to the calling function.

•

•

• It does so with a return statement.

Important Note

This return statement is for transferring
information from the sub function back
calling function.

•
to the

• The act of returning a value is done so through
the keyword return. Returning a value is NOT the
same as cout information to screen.

• Next example demonstrates a function that
outputs to the screen, however does not return a
value.

Example – output

Prototype / Header:

function

•
void printNumber(int);

• Definition:
void printNumber(int
{

num) //matches above

cout << num << endl;
}

Note the function type is void, nothing is being
returned

•

Example of

Calling the function:

calling function

•

int
{

main()

//gets a number from the user
int n = getNumber();
//prints the number to screen
printNumber(n);
return 0;

}

Why use functions

Organizational reason•

– Sometimes we have a lot

– Functions offers a way to
program into smaller sub

to do in our program

break a part a large
programs.

• Think of a paragraph of text that is very long, if you lost
your position, it is hard to find it again.

Why use functions

Logical reason•

– A task might be performed repeatedly
different parts of the program

through out

– Instead of copying and pasting the same code into
multiple places, we can replace that with a
function.

• If we need to make modifications it is much harder to
change it in multiple places

• Much easier to change it in just that one function

Designing of functions

There are many different views on what is
consider a well design function.

There are even arguments on why functions
should be used at all, poorly designed
functions will use up a lot of system resources,
when the function is called.

•

•

Designing

Each function
task.

a function – Guide Line

should do one thing, achieve one•

• Functions should be short, not more than X
number of lines long

– X being a number that the designer sees fit and it also
depends on what the function needs to accomplish.

– Think of it as writing a paragraph, as soon as you

complete presenting the idea then you are done.

