
2D Arrays in C++

Instructor: Andy Abreu

Why 2D Arrays?

One dimensional arrays are great, but why
makes such a fuzz and create two dimensional
arrays?

•

• What do we really gain from using a two
dimensional array?

• What are some sensible uses of two
dimensional arrays?

Declaring an Array

• Model:
type name[row_size][column_size]

–

–

–

–

type: The data type, example:

name: The name of the array,

row_size: The row capacity of

int

example: grades

the array, example: 10

column_size: The column capacity of the array, ex. 5

•

•

int grades[22][6];

string students[2][22];

Understanding parts of a 2D

Say we have the following array:

int grades[4][8];

Here is the graphical representation:

array

•

•

Understanding

Same array:
– int grades[4][8];

In English the grades

parts of a 2D array

•

• variable is describe as an
array of array of integers

• While grades[0],
of integers

grades[1], … grades[3] are array

• And grades[0][0] is simply an integer

Accessing Elements in the 2d Array

• If we have an 2D array declare as the following:
– int grades[5][10];

• The elements of the array are as follows:
–
–

–

–

–

grades[0]
grades[1]
grades[2]
grades[3]
grades[4]

• Each “element”
elements

represent an array of 10

Accessing Elements in the 2d Array

• We can assign values to grades[0] as follows:
–
–

–

–

–

–

–

–

–

–

grades[0][0]
grades[0][1]
grades[0][2]
grades[0][3]
grades[0][4]
grades[0][5]
grades[0][6]
grades[0][7]
grades[0][8]
grades[0][9]

=
=
=
=
=
=
=
=
=
=

89;
93;
85;
88;
100;
89;
83;
85;
78;
99;

• Likewise for grades[1], grades[2], grades[3], grades[4]

Printing elements of the 2D array

• So can we print out all the
following manner?

grades in the

–

–

–

–

–

cout

cout

cout

cout

cout

<<

<<

<<

<<

<<

grades[0]

grades[1]

grades[2]

grades[3]

grades[4]

<<

<<

<<

<<

<<

endl;

endl;

endl;

endl;

endl;

• Why or why not?

Printing an element of a

We can use a for loop to printing
of the array grades[0]

Code would look like this:

for (int i = 0 ; i < 10 ; ++i)

2D array

• out elements

•

cout << grades[0][i] <<

cout << endl;

" ";

Printing Entire 2D array

So if we need an array to print out elements of
grades[0], then naturally to print out all the
grades[x] we will need to employ a second loop.
Code looks like this:
for(int r = 0 ; r < 5 ; ++r)
{

for(int c = 0 ; c < 10 ; ++c)
cout << grades[r][c] << " ";

cout << endl;
}

•

•

Initializing the 2D array

Sometimes we want to pre-initialize the array,
we can do the following:

– int lookup[3][2] = { {97, 93}, {87, 83}, {77, 73} };

•

• Sometimes we want to initialize the entire
array to zero, we can do the following:

– int sums[5][10] = {0};

• {0} is a special code to C++, {1} doesn’t work.

2D Arrays and
Functions

2D Arrays and Functions

• Like regular arrays, two dimensional arrays
are

can
be pass into sub functions, and
always pass by reference.

they

• It is important to note:

– If the function is trying to access
array or

the entire 2D

– An element of the 2D array, the 1D array.

Example of passing 2D array

To pass entire 2D array into the function•

–

–

–

int gradesSet[10][20];

printAllScore(gradesSet);

void printAllScore(int gradesSet[][20], int row,
col)

int

• The COLUMN SIZE of the 2D array MUST be
provided while row size is optional.

Passing one element of 2D array

• To pass 1 element of the 2D array
function

into the

–

–

–

–

–

–

int gradesSet[10][20];

printRowScore(

printRowScore(

printRowScore(

printRowScore(

printRowScore(

gradesSet[0]

gradesSet[1]

gradesSet[2]

gradesSet[3]

gradesSet[4]

);

);

);

);

);

– void printRowScore(int grades[], int col)

