1. Write a $\mathbf{C + +}$ function called negSum that returns the sum of all negative elements in an array of integers.
For example, a program that uses the function negSum follows.

main() \{

int data[6] $=\{-5,-4,1,3,2,-3\}$;
int x ;
$\mathrm{x}=$ negSum (data, 6);
cout <<"The negative sum is: " << x << endl; //Output is -12 because $-5+-4+-3=-12$ \}
2. Write a $\mathbf{C + +}$ function called range that returns the difference between the largest and smallest elements in an array.
For example, a program that uses the function range follows.
main() \{
int data[6] $=\{11,12,11,3,12,13\}$;
int x ;
$x=$ range (data, 6);
cout << "The range is: " << x << endl; // Output is 10 because $13-3=10$.
\}
3. Write a function called sum2D that returns the sum of all elements in a 2-dimensional array.
For example, a program that uses the function sum2D follows. int main() \{
int array[3][4] $=\{\{1,2,3,4\},\{1,2,3,4\},\{1,2,3,4\}\} ;$
cout << sum2D (array, 3, 4) << endl;
return 0;
\}
The input values 3 and 4 specify the number of rows and columns in the array. The program should print an answer of 30
4. Write a function called biggestEntry that uses a two dimensional array and two parameters representing the row and column capacities. The function should return the value of the biggest entry in the array.
For example, a program that uses the function biggestEntry follows.
int main() \{
int $x[2][3]=\{\{1,2,3\},\{4,7,3\}\}$;
cout << biggestEntry $(x, 2,3)$ << endl;
return 0;
\}
It should print 7 (since 7 is the biggest entry in the array).
5. Write a function called sixCount that returns a count of the number of entries that are equal to 6 in a 2-dimensional array. The function should use a parameter to specify the array and parameters for the row count and column count.
For example, a program that uses the function sixCount follows.
int main() \{
int $\operatorname{arr}[2][6]=\{\{6,4,3,1,2,2\},\{6,6,5,2,3,6\}\} ; / /$ array has 4 entries of 6
cout << sixCount(arr, 2, 6) << endl; // prints 4
return 0 ;
\}

